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Abstract

We consider an elliptic perturbation problem in a circle by using the ana-
lytical solution that is given by a Fourier series with coefficients in terms
of modified Bessel functions. By using saddle point methods we construct
asymptotic approximations with respect to a small parameter. In par-
ticular we consider approximations that hold uniformly in the boundary
layer, which is located along a certain part of the boundary of the domain.
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1 Introduction

Consider the elliptic partial differential equation

ε∆Φ(x, y) − ∂Φ

∂y
(x, y) = f(x, y), x2 + y2 < 1, (1.1)

where ε > 0. The boundary condition reads

Φ(cos θ, sin θ) = g(θ) (1.2)

on the boundary of the circle r = 1, where we introduced the polar coordinates

x = r cos θ, y = r sin θ, 0 ≤ r ≤ 1, −π < θ ≤ π. (1.3)

The problem is to find the asymptotic behavior of Φ as ε→ 0. The solution
to equation (1.1) has a boundary layer at the boundary where y is positive. In
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Figure 1: Boundary layer inside the circle along the upper boundary r = 1, y > 0 and
near the points (±1, 0).

particular it is of interest to find the behavior of Φ in small neighborhoods of
the points (x, y) = (±1, 0), the places of birth of the boundary layer.

When ε→ 0 the second order elliptic operator in (1.1) reduces (in the limit
ε = 0) to a first order operator. The solution of the reduced equation cannot
satisfy the boundary condition on the whole circle. The capricious behavior of
the solution occurs in the boundary layer, whereas along the part with y < 0
the solution behaves very regularly; see [6, Theorem IV].

This type of singular perturbation problems is well studied in the literature.
Rather early publications are [26] and [11], who have pointed out that the
boundary layer occurs near r = 1, y > 0 and the points (±1, 0); see Figure 1.
A classical paper for the construction of the asymptotic expansion is [6], where
general operators in a general convex domain are considered. Further research
is done in numerous papers and books, for example in [9]. The most common
method to obtain the approximations is based on stretching the variables in the
boundary layers and substituting local expansions in the transformed equations.
Matching the solutions from one domain into other domains yield values for
integration constants, from which uniform approximations can be obtained.

When we choose simple operators (as in (1.1)) and domains it is possible to
solve the problems analytically and to use other methods for obtaining asymp-
totic approximations. In [23] we have used analytical methods based on integral
representations to study a problem as in (1.1)–(1.2), with simple functions f and
g, in a sector

{
x = r cos θ, y = r sin θ

∣∣ r ≥ 0, 0 ≤ θ ≤ α < 2π
}
, (1.4)

and we were able to describe in detail the behavior of the solution in the bound-
ary layer θ ∼ α and in the internal layer θ ∼ 1

2π. It was also possible to describe
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precisely the behavior of the solution in the case of the transition of the sector
into the quarter plane α→ 1

2π, in which case a boundary layer of different type
arises (a so-called parabolic layer is present when α = 1

2π, whereas the bound-
ary layer is of a linear character when α 6= 1

2π). For further recent studies on
this type of problems in which the asymptotic approximations are derived from
explicit representations of the solutions, we refer to [13], [14], [12], [15], [16], and
[17]. See also [21] and [22].

In [19] the circle problem is considered with the same simple differential
equation and boundary condition as in our case. A detailed analysis is given for
the boundary layer near the points (±1, 0) by using boundary layers coordinates.
Integrals of ratios of Airy functions are used to obtain the approximations. In
[25] the problem is considered in a domain exterior to the unit circle. In that
very instructive paper the exact solution is used with saddle point methods for
integrals and residue series in terms of zeros of modified Bessel functions. In
[10] these results are summarized and numerical aspects of this problem are
discussed.

In [8], [19] and [20] problems from mathematical physics are given that lead
to the elliptic singular perturbation problem considered here. The equation (1.1)
arises in magnetohydrodynamics, where ε measures the importance of viscous
force relative to the electromagnetic force, and in the theory of plate-membranes
under tension in the y−direction, where ε measures the bending stiffness.

The purpose of the paper is to construct approximations of Φ(x, y) by using
the analytic representation of the solution, which in the present case can be
given in terms of a Fourier series of which the coefficients can be written in
terms of Bessel functions.

2 Singular perturbation methods

We give a few steps on the construction of the asymptotic solution of the singular
perturbation problem by substituting an asymptotic expansion. We consider the
problem defined in (1.1)–(1.2) with simple choices of f and g. In order to be
able to construct an explicit series solution later in this paper we consider

ε∆Φ(x, y) − ∂Φ

∂y
(x, y) = 1, x2 + y2 < 1,

Φ(cos θ, sin θ) = 0.
(2.1)

To give a first impression of what is happening in the boundary layer we
consider an example of a singular perturbation problem for an ordinary differ-
ential equation. It is known that the influence of the term wxx in (1.1) is not
very great in the interior of the circle and when x is bounded away from ±1.
This is due to the influence of the characteristic lines x = constant of the linear
operator in the equation. The solution of the equation

ε
d2w

dy2
− dw

dy
= 1, w = 0 if y = ±1, (2.2)
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Figure 2: The solution w(y) of (2.3) on the interval [−1, 1], with boundary layer near
y = 1.

is given by

w(y) = −1 − y +
ey/ε − e−1/ε

sinh 1/ε
. (2.3)

We observe that on the interval [−1, 1− δ], where δ is a fixed small positive
number, for small values of ε the function w is equal to w0(y) = −1 − y plus
a function that is exponentially small. Near the boundary y = 1 the solution
w drops from the value −2 to its proper boundary value 0; see Figure 2. In
this example we see that the boundary layer occurs at y = 1. Similarly, for the
circle problem (1.1) the boundary layer occurs at the upper semi-circle. Inside
the circle the solution of the circle problem can be approximated by

w0(x, y) = −y −
√

1 − x2, (2.4)

which satisfies the condition on the lower semi-circle, but not on the upper
semi-circle. Using the singular perturbation method (cf. for instance [6]) we
can construct more terms in an expansion. When we substitute the formal
series

Φ(x, y) ∼
∞∑

n=0

εnwn(x, y) (2.5)

into (2.1) and equate equal powers of ε, we find

∂w0(x, y)

∂y
= −1,

∂wn(x, y)

∂y
= ∆wn−1(x, y), n = 1, 2, . . . ,

(2.6)

and all wn should vanish at the lower part of the unit circle. This gives w0 given
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in (2.4) and

wn(x, y) =

∫ y

−
√

1−x2

∆wn−1(x, η) dη, n = 1, 2, . . . , . (2.7)

It is easily verified that

w1(x, y) =
y +R

R3
, w2(x, y) =

y +R

2R7

(
3y + 12yx2 +R

)
,

w3(x, y) =
y +R

2R11
×

(
15(8x4 + 12x2 + 1)y2 + 3(3 + 20x2)yR− 2(12x4 + 6x2 − 1)R2

)
,

(2.8)
where R =

√
1 − x2. We observe that these wn become singular at the points

(±1, 0) and that they do not satisfy the boundary condition wn = 0 on the
upper part of the unit circle.

To satisfy the boundary conditions along the upper part of the unit circle so-
called boundary layer terms are introduced. These functions have the property
of being of order O(εn) for all n everywhere inside the unit circle, except for a
small neighborhood of the upper part of the circle. Following the construction
of the boundary layer term given in [6], we can write in first approximation

Φ(x, y) = −y −
√

1 − x2 + 2 sin θ e−
1

ε
(1−r) sin θ ψ(x, y) + z0(x, y, ε), (2.9)

where z0(x, y, ε) = O(ε), uniformly inside the unit disk, with the exception of
small neighborhoods of the points (±1, 0). The function ψ is a C∞−function,
a smoothing factor, on the disc, which equals unity on a neighborhood of the
upper part of the circle, say the domain given by 2

3 < r ≤ 1, y > y0, where y0 is
a fixed positive small number, and ψ vanishes in the lower part of the disc.

In [6] an iteration process is given for obtaining any number of terms wm

and boundary layer functions vm in the expansion

Φ(x, y) =

n∑

m=0

εmwm(x, y) + ψ(x, y)

n+1∑

m=0

εmvm(x, y, ε) + zn(x, y, ε), (2.10)

where wm(x, y) and vm(x, y, ε) are uniformly bounded for ε > 0 for r ≤ 1, with
the exception of small neighborhoods of the points (±1, 0), and where ψ(x, y)
is a smoothing factor. For a description of the properties of the remainder
zn(x, y, ε) we refer to [6, Theorem VI].

3 The solution of the boundary value problem

We construct the solution of equation (1.1) and boundary condition (1.2) with
the simple functions f(x, y) = 1, g(θ) = 0. A first substitution

Φ(x, y) = −y − eωyF (x, y), (3.1)
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gives the problem

∆F (x, y) − ω2 F (x, y) = 0, ω =
1

2ε
, (3.2)

with boundary condition

F (cos θ, sin θ) = − sin θ e−ω sin θ. (3.3)

The Helmholtz equation in (3.2) can be solved in terms of modified Bessel
functions by using the polar coordinates

x = r cos θ, y = r sin θ. (3.4)

In terms of r and θ, (3.2) reads

r2Frr + rFr − ω2r2F + Fθθ = 0. (3.5)

The modified Bessel function In(ωr) satisfies the differential equation

r2G′′ + rG′ −
(
ω2r2 + n2

)
G = 0, (3.6)

where differentiation is with respect to r. It is straightforward to verify that
the Fourier series

F (x, y) =

∞∑

n=−∞
anIn(ωr)einθ (3.7)

satisfies (3.2), where the coefficients an follow from the well-known Bessel func-
tion series (cf. [1, 9.6.33])

ez cos t =

∞∑

n=−∞
In(z) cosnt. (3.8)

This gives

an =
I ′n(ω)

In(ω)
ein 1

2
π. (3.9)

By using the symmetry In(z) = I−n(z), we obtain

F (x, y) = 2

∞∑

n=0

′ I
′
n(ω)

In(ω)
In(ωr) cosn(θ + 1

2
π), (3.10)

where the prime in the summation symbol means that the first term of the sum
is to be halved.
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4 The Poisson summation formula

In the previous section we have derived the solution of the boundary value prob-
lem (3.2)–(3.3) in terms of the Fourier series given in (3.10). In this section we
investigate this Fourier series by transforming it by using the Poisson summa-
tion formula. In this way we obtain a series of integrals, and the first term of
the new series can be used for obtaining the asymptotic expansion of Φ(x, y)
outside the boundary layer.

We apply the Poisson summation formula to the series in (3.10). We have

∞∑

n=−∞
f(n) =

∞∑

m=−∞
f̂(2πm), (4.1)

where f̂ is the Fourier transform of f :

f̂(y) =

∫ ∞

−∞
f(x) eixy dx. (4.2)

This result holds if f is of bounded variation and absolutely integrable on IR
(cf. [29, p. 68]). For cosine transforms we have (by assuming that f is even)

∞∑

n=0

′ f(n) =
∞∑

n=0

′ f̂(2πm), f̂(y) = 2

∫ ∞

0

f(x) cos(xy) dx. (4.3)

Applying this to (3.10) we obtain

F (x, y) = 2

∞∑

n=0

′ Fm(x, y), (4.4)

where

Fm(x, y) = 2

∫ ∞

0

I ′ν(ω)

Iν(ω)
Iν(ωr) cos ν(θ + 1

2
π) cos(2πmν) dν. (4.5)

The function Iν(z) is an analytic function of ν, with the the asymptotic behavior
as given in (A.2). For small values of ν and large z the estimates given in (A.3)
are applicable, and Iν(z) is positive if z and ν are positive. It follows that all
functions Fm(x, y) in (4.5) are well-defined, and that the Poisson summation
formula can be applied. The integrals that define Fm(x, y) converge fast for
fixed values of ω, as follows from (A.2).

4.1 The asymptotic behavior of F0(x, y)

To investigate the asymptotic behavior of F0(x, y) defined in (4.5) we use the
Debye uniform approximation of Iν(ω) given in Appendix A. We have

I ′ν(ω)

Iν(ω)
Iν(ωr) =

√
ν2 + ω2

√
2πω

eνη

(ν2 + ω2r2)
1

4

[1 + O(1/ω)] , (4.6)
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as ω → ∞, uniformly with respect to ν ∈ [0,∞). The quantity η is given by

η =
√

1 + z2 + ln
z

1 +
√

1 + z2
, z =

ωr

ν
. (4.7)

Using this in F0 of (4.5), putting ν = ωr sinh t, replacing the cosine by an
exponential function, we obtain

F0(x, y) ∼
√
ωr

2π

∫ ∞

−∞

√
1 + r2 sinh2 t

√
cosh t e−ωrf(t) dt, (4.8)

where
f(t) = (t− iθ − i 1

2
π) sinh t− cosh t. (4.9)

The saddle points follow from the equation f ′(t) = (t − iθ − 1
2πi) cosh t = 0.

The zeros of cosh t are i(1
2π+ kπ). The other one is iθ+ 1

2πi. For details on the
saddle point method for integrals we refer to [28]

Several interesting aspects can be observed:

• when θ → 0, the two saddle points and a singularity of the integrand
coalesce.

• when θ → 0 and r → 1, another singularity coalesces with the two coa-
lescing saddle points.

There is no standard method in uniform asymptotic methods for integrals avail-
able to handle the second case. In the first case Airy functions can be used,
although the term

√
cosh t causes a difficulty.

This first orientation in the asymptotic phenomena demonstrates the com-
plicated situation that arises in the points (±1, 0). On the other hand, the
asymptotic estimate (4.6) is not valid in the neighborhood of the points ν = ±iω
and ν = ±iωr. The first points correspond with saddle points due to zeros of
cosh t.

By using standard methods we obtain the first terms in the asymptotic
expansion of F0 for the case that y < 0. Because our singular perturbation
problem is symmetric with respect to x we can always assume that x ≥ 0.

Let θ ∈ [− 1
2π, 0). The saddle point of interest is t0 = i(θ + 1

2π), and we can
deform the interval of integration (−∞,∞) into the path of steepest descent
through the saddle point t0; see Figure 3.

We have f(t0) = sin θ and transform

f(t) = f(t0) + 1
2
u2, sign(t) = sign(u), (4.10)

which gives

F0(x, y) ∼
√
ωr

2π
e−ωr sin θ

∫ ∞

−∞
e−

1

2
ωru2

g(u) du, (4.11)

where

g(u) =
√

1 + r2 sinh2 t
√

cosh t
dt

du
. (4.12)
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Figure 3: Saddle point contour through the saddle point t0 = i(θ+ 1

2
π) if θ ∈ [− 1

2
π, 0).

The points t±
1

= ±arccosh 1

r
+ 1

2
πi are singularities of

√
1 + r2 sinh2 t. The point 1

2
πi

is also a singularity, because of the factor
√

cosh t. When θ → 0 and r → 1 the three
singularities at t±

1
and 1

2
πi coincide with the saddle point t0, and the standard saddle

point method cannot be used.

The expansion of g in powers of u can be obtained by inverting the relation

1
2
u2 = − sin θ

[
1
2
(t− t0)

2 + 1
144

(t− t0)
4 + 1

8
(t− t0)

6 + . . .
]

+i cos θ
[

1
3
(t− t0)

3 + 1
30

(t− t0)
5 + 1

840
(t− t0)

7 + . . .
]
,

(4.13)

that is

t = t0 +
u√

− sin θ
− i cos θ

3 sin2 θ
u2 − 9 sin2 θ + 20 cos2 θ

72(− sin θ)
7

2

u3 + . . . . (4.14)

This gives
g(u) = g0 + g1u+ g2u

2 + . . . , (4.15)

with

g0 =
√

1 − x2,

g2 =
r

24 y3θ (1 − x2)
3

2

[
12r2 sin4 θ − (5 cos2 θ + 3 sin2 θ)(1 − x2)2

]
.

(4.16)

When we take into account the term g0 only, we obtain

F0(x, y) ∼ e−ωr sin θ
√

1 − x2, (4.17)

which gives

Φ(x, y) ∼ −y −
√

1 − x2 = w0(x, y), (4.18)

cf. (2.4). To obtain a second term, which should be compared with w1 of (2.8),
we need g2 and a coefficient that comes from a second term in the Debye-type
expansions of the modified Bessel function Iν(ω); cf. Appendix A. That is, we
use

I ′ν(ω)

Iν(ω)
Iν(ωr) =

√
ν2 + ω2

√
2πω

eνη

(ν2 + ω2r2)
1

4

×
[
1 +

3 cosh2 t− 5 sinh2 t

24ωr cosh3 t
− 1

2ω(1 + r2 sinh2 t)2
+ O(1/ω2)

]
,

(4.19)

9



i π/2

t0

i π

Figure 4: Saddle point contour through the saddle point t0 = i(θ + 1

2
π) if θ ∈ (0, 1

2
π).

where t and ν are related by ν = ωr sinh t. We have

F0(x, y) ∼
√
ωr

2π
e−ωr sin θ

∫ ∞

−∞
e−

1

2
ωru2

g(u)h(u) du, (4.20)

where g(u) is given by (4.12) and h(u) corresponds with the function between
square brackets in (4.19). We expand

h(u) = 1 +
[
h0 + h1u+ O(u2)

] 1

ω
+ O(ω−2), (4.21)

where

h0 =
3 cosh2 t0 − 5 sinh2 t0

24r cosh t0
− 1

2(1 + r2 sinh2 t0)2
. (4.22)

It follows that

F0(x, y) = e−ωr sin θ

[
g0 +

(
g0h0 +

1

r
g2

)
1

ω
+ O(ω−2)

]
. (4.23)

By using the values of the coefficients g0, g2 and h0 given above, we obtain

F0(x, y) = e−ωr sin θ

[
√

1 − x2 +
−y −

√
1 − x2

2ω(1 − x2)
3

2

+ O(ω−2)

]
. (4.24)

For Φ this gives

Φ(x, y) = −y −
√

1 − x2 +
y +

√
1 − x2

2ω(1 − x2)
3

2

+ O(ω−2), ω =
1

2ε
, (4.25)

which is the same as the two-term expansion that is obtained by using singular
perturbation methods (cf. (2.4), (2.5) and (2.8)).

We expect that all higher terms wn of (2.5) follow from the saddle point
method, by using more terms in the Debye-type expansions of the Bessel func-
tions and in the expansion of g(u).

We have derived the above results for negative values of y (that is, θ ∈
[− 1

2π, 0)), although the results appear to hold inside the unit disk, with the
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exception of the boundary layers. When y > 0, the saddle point t0 is located
above the other saddle point at 1

2πi, which is also a singularity of the integrand

(because of the factor
√

cosh t). The point t0 is still the relevant saddle point
in this case, and we have to integrate around the branch cut of

√
cosh t; see

Figure 4. This yields the same terms as in (4.25). Again, this follows from
standard saddle methods, but the details will not be given.

It is of interest to see how the results for y < 0 and for y > 0 can both be
obtained by using uniform asymptotics, that is, by using a cubic transformation
in (4.8). We will not work out this in the present paper.

The approximations derived so far are not valid in the boundary layers. In
§4.2 we discuss the behavior of F0 on the periphery of the circle, and we show
that, if r = 1, with exception of the point(0, 1),

F0(x, y) = − sin θ e−ω sin θ + O
(
e−ω

)
, ω → ∞. (4.26)

So, apart from the point (0, 1), F0 satisfies the boundary relation for F (cf.
(3.3)) up to an exponentially small term.

A further analysis is needed to show how this behavior can be obtained from
the integral in (4.5) with m = 0.

In connection with this we mention the following points.

• Equations (4.8) and (4.20) are obtained by replacing the modified Bessel
functions in (4.5) with their Debye-type approximations. These approxi-
mations are excellent if ν is positive (and ω is large). In the saddle point
analysis we encounter saddle points near ν = iω, which is a turning point
of the modified Bessel function. Near the turning point the Debye-type
approximations are not valid, and the singularities in the approximations
of the Bessel functions are in fact not related with singular points of the
Bessel functions themselves.

• By replacing in (4.5) the Bessel functions with Debye-type approximations
we cannot take into account the ν−zeros of Iν(ω), which cause poles near
the saddle points. From Appendix B it follows that the zeros occur if

ν = ±iω
[
1 + O(ω− 2

3 )
]

(4.27)

(cf. (B.10)). The transformation of variables ν = ωr sinh t, which leads
to the integral in (4.8), maps the ν−zeros that are near iω to points in
the t−plane near 1

2πi. At this point interesting phenomena occur when
we consider (x, y) in (4.8) near the points (±1, 0).

• We might replace the Bessel functions in (4.5) with the Airy-type approx-
imations as given in Appendix A, which are based on results in [5]. The
Airy-type expansions, which are valid near the turning point, do not show
singular terms. However, it is quite difficult to manipulate these approx-
imations in a saddle point analysis. In [19] integrals with ratios of Airy
functions are used to approximate the solution of Φ(x, y) near the points
(±1, 0); the analysis is based on singular perturbation methods.
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4.2 The behavior of Fm at the boundary

We investigate the behavior of the quantities Fm(x, y) introduced in (4.5) at r =
1. This gives insight in the role of each Fm(x, y) in constituting the boundary
value of F (x, y) given in (3.3). We have to evaluate integrals of the type

G′
σ(ω) =

∫ ∞

0

I ′ν(ω) cosσν dν, (4.28)

where σ is a real number. In order to do this we first consider the integral

Gσ(ω) =

∫ ∞

0

Iν(ω) cosσν dν. (4.29)

We use the Sommerfeld-type integral representation (cf. [24], page 235 or [27],
page 181)

Iν(z) =
1

2πi

∫ iπ+∞

−iπ+∞
ez cosh t−νt dt. (4.30)

For the contour we take the two half lines t = ±iπ+v, v ≥ δ > 0 and the segment
that runs from t = δ − iπ to t = δ + iπ. With this choice we can substitute the
integral in (4.30) into (4.29), interchange the order of integration, and obtain

Gσ(ω) =
1

2πi

∫ iπ+∞

−iπ+∞
eω cosh t t

t2 + σ2
dt. (4.31)

We let δ → 0 and obtain

Gσ(ω) = Aσ(ω)− 1

2π

∫ ∞

0

e−ω cosh t

[
π − σ

t2 + (π − σ)2
+

π + σ

t2 + (π + σ)2

]
dt, (4.32)

where

Aσ(ω) =
1

2πi

∫ iπ

−iπ

eω cosh t t

t2 + σ2
dt. (4.33)

This integral vanishes if |σ| > π, whereas if −π < σ < π the poles at t = ±iσ
are avoided by integrating along small semi-circles (with ℜt ≥ 0) around the
poles. In the latter case the integral can be evaluated by using the residues. It
follows that

Aσ(ω) =





0, if |σ| > π,

1
2
eω cos σ, if − π < σ < π.

(4.34)

We observe that when |σ| ≤ π − δ < π,

Gσ(ω) =
1

2
eω cos σ + O

(
e−ω

)
, ω → ∞. (4.35)

When σ = ±π we have

G±π(ω) = 1
4
e−ω −

∫ ∞

0

e−ω cosh t 1

t2 + 4π2
dt. (4.36)
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The function Gσ(ω) is continuous (even analytic) at σ = ±π, which cannot be
seen from the above representations.

We proceed with the integrals Fm(x, y) of (4.5) at r = 1. Writing

2 cos ν(θ + 1
2
π) cos(2πmν) =

cos ν(θ + 1
2
π − 2πm) + cos ν(θ + 1

2
π + 2πm)

(4.37)

we obtain

F0(x, y)
∣∣
r=1

= − sin θ e−ω sin θ

+
1

π

∫ ∞

0

e−ω cosh t

[
π − σ

t2 + (π − σ)2
+

π + σ

t2 + (π + σ)2

]
cosh t dt,

(4.38)

where σ = θ + 1
2π. This result is valid for θ < 1

2π. In particular, it is not valid
at the summit of the circle, the point (0,1). Similar results hold for the other
quantities Fm(x, y). When θ < 1

2π we have

Fm(x, y)
∣∣
r=1

=
∑

(+,−)

1

2π

∫ ∞

0

e−ω cosh t

[
π − σ±

t2 + (π − σ±)2
+

π + σ±
t2 + (π + σ±)2

]
cosh t dt,

(4.39)
where the sum contains two terms with σ± = θ + 1

2π ± 2πm. Because the
functions Φ(x, y), F (x, y) and Fm(x, y) are even functions of x, we can use (4.38)
and (4.39) also for negative values of x.

We see that from (3.3), (3.10) and (4.38) that, when we stay away from
the point (0,1), F0(x, y) satisfies the boundary condition along the circle up
to an exponentially small term. Also, every Fm(x, y) satisfies equation (3.2).
Therefore, we expect that the function F0(x, y) can be used as an excellent
approximation for F (x, y) in the whole unit disc, with exception of a small
neighborhood of the point (0, 1). Near that point part of the function F1(x, y)
is needed to satisfy the boundary condition (up to exponentially small order).

5 The Watson transformation

Another approach is based on replacing the Fourier series in (3.10) with an
integral in the complex plane, where we integrate with respect to complex orders
of the Bessel functions.

For example, we can write:

F (x, y) = −i
∫

C

I ′ν(ω)

Iν(ω)
Iν(ωr)

cos ν(θ − 1
2π)

sin(πν)
dν, (5.1)

where C is a contour around the positive poles of 1/ sin(πν) and through the
pole at ν = 0 (which gives half of the residue of this pole); see Figure 5. The
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Figure 5: Contour of integration around the poles of 1/ sin(πν).

residues of the poles of 1/ sin(πν) at ν = n are (−1)n, and (−1)n cosn(θ− 1
2π) =

cosn(θ + 1
2π). This gives the series in (3.10).

For this approach it is needed to know the location of the zeros of the modi-
fied Bessel function Iν(ω), and the possibility of using these zeros for obtaining
an expansion in the form of a residue series. When we use a contour as shown
in Figure 5 we can avoid the complex ν−zeros of Iν(ω), which are located in
the half-plane ℜν ≤ − 3

2 (cf. Lemma 1, Appendix B). Hence, as long as the
contour is in the half-plane ℜν ≥ 0, no poles other than those of 1/ sin(πν) can
be taken into account.

The convergence of (5.1) for large ℜν follows from (A.2). We conclude that
(5.1) holds for any value of θ, as long as ℜν → ∞ on the upper and lower parts
of the contour. When we deform the contour along the imaginary ν−axis, we
need to restrict the values of θ to (0, π) because (cf. [1, Eq. 6.1.31])

1

|Γ(1 + iµ)| =

√
sinhπµ

πµ
. (5.2)

Before discussing asymptotic methods it is of interest to see how the integral
gives the boundary value if r = 1. From (3.3) it follows that we have to verify
the relation

−i
∫

C
I ′ν(ω)

cos ν(θ − 1
2π)

sin(πν)
dν = − sin θ e−ω sin θ. (5.3)
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The following steps are valid if θ ∈ (0, π).

−i
∫

C
Iν(ω)

cos ν(θ − 1
2π)

sin(πν)
dν =

−i
∫ −i∞

+i∞
Iν(ω)

cos ν(θ − 1
2π)

sin(νπ)
dν =

−i
∫ ∞

0

[I−iµ(ω) − Iiµ(ω)]
coshµ(θ − 1

2π)

sinh(πµ)
dµ =

2

π

∫ ∞

0

Kiµ(ω) coshµ(θ − 1
2
π) dµ = e−ω sin θ.

(5.4)

The result in (5.3) follows from differentiating with respect to ω. In the final step
in (5.4) we have interpreted the integral as a Kontorovich-Lebedev transform,
and used a result in [7, Vol. 2, p. 175]. We have also used the well-known relation
for the modified Bessel functions:

I−ν(ω) = Iν(ω) +
2

π
sinπν Kν(ω). (5.5)

A different proof can be based by substituting in (5.3) the Sommerfeld con-
tour integral for the Bessel function, see (4.30). This gives

−i
∫

C
Iν(ω)

cos ν(θ − 1
2π)

sin(πν)
dν =

−i
2πi

∫ iπ+∞

−iπ+∞
eω cosh t

∫

C
e−νt

cos ν(θ − 1
2π)

sin(πν)
dν dt =

1

2πi

∫ iπ+∞

−iπ+∞
eω cosh t sinh t

cosh t− cos(θ + 1
2π)

dt,

(5.6)

where the ν−integral in the second line is evaluated by using residues and using
the series

∞∑

n=0

zn cosnt =
1 − z cos t

1 − 2z cos t+ z2
, |z| < 1. (5.7)

By using the method for evaluating (4.31) it can easily be shown that the final
integral in (5.6) equals e−ω sin θ.

A remarkable point is that the derivation in (5.4) is valid only for θ ∈ (0, π).
For the singular perturbation problem this is the domain of interest, in particular
if r → 1. This brings us round to investigate (5.1) also if r < 1.

As in (5.3) we take θ ∈ (0, π), and write

F (x, y) = −i
∫ −i∞

+i∞

I ′ν(ω)

Iν(ω)
Iν(ωr)

cos ν(θ − 1
2π)

sin(πν)
dν. (5.8)

In (5.4) a crucial step was the introduction of the K−function. As a conse-
quence, the dominant term at ν = 0 in the first and second line, that is, the
function Iν(ω), has been replaced with an exponentially small term Kiµ(ω) in
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the fourth line. As an extra advantage, the troublesome term sinπν has been
removed.

In the present case we replace in (5.8) the function
I′

ν
(ω)

Iν(ω) Iν(ωr) (considered

as a function of ν) by its odd part, because the even part does not contribute
in the integral. The odd part equals

1

2Iν(ω)I−ν(ω)

[
I−ν(ω)I ′ν(ω)Iν(ωr) − I ′−ν(ω)Iν(ω)Iν(ωr)

]
=

sinπν

πIν(ω)I−ν(ω)

[
ω−1 Iν(ωr) − I ′−ν(ω)Iν(ω)Kν(ωr)

]
,

(5.9)

where we have used the Wronskian (cf. [24, p. 248] or [1, p. 375])

Iν(ω)I ′−ν(ω) − I ′ν(ω)I−ν(ω) = −2 sinπν

πω
. (5.10)

It follows that (5.8) can be written as

F (x, y) =
i

π

∫ +i∞

−i∞

ω−1 Iν(ωr) − I ′−ν(ω)Iν(ω)Kν(ωr)

Iν(ω)I−ν(ω)
cos ν(θ − 1

2
π) dν. (5.11)

When r = 1 the Bessel functions fraction reduces to −K ′
ν(ω), as follows from

another Wronskian:

I−ν(ω)K ′
ν(ω) − I ′−ν(ω)Kν(ω) = − 1

ω
. (5.12)

Hence, for r = 1, (5.11) reduces to the boundary value − sin θe−ω sin θ; cf. the
fourth line in (5.3) and (3.3).

5.1 Asymptotic analysis in and near the boundary layer

We analyze the two parts forming the integral in (5.11). We write

F (x, y) = FB(x, y) + FI(x, y), (5.13)

where

FB(x, y) =
i

ωπ

∫ +i∞

−i∞

Iν(ωr)

Iν(ω)I−ν(ω)
cos ν(θ − 1

2
π) dν

=
−1

ωπ

∫ ∞

−∞

Iiµ(ωr)

Iiµ(ω)I−iµ(ω)
coshµ(θ − 1

2
π) dµ,

FI(x, y) =
1

πi

∫ +i∞

−i∞

I ′−ν(ω)

I−ν(ω)
Kν(ωr) cos ν(θ − 1

2
π) dν

=
1

π

∫ ∞

−∞

I ′−iµ(ω)

I−iµ(ω)
Kiµ(ωr) coshµ(θ − 1

2
π) dµ.

(5.14)

The function FI(x, y) yields the asymptotic expansion outside the boundary
layer, which may be compared with the contributions given by F0 in (4.24).
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The function FB(x, y) is the boundary layer function: in the interior of the
disk it is exponentially small compared with FI(x, y), except near the upper
boundary where it gives the correction to FI(x, y), in order to produce the
correct boundary value. In other words, FI(x, y) can be compared with the
linear term −1 − y in the solution (2.3) of example (2.2), and FB(x, y) plays
the part of the other term in (2.3). See also (2.9), where the boundary layer
function contains the smoothing factor ψ(x, y).

5.1.1 The contributions from FI(x, y)

In the fourth integral of (5.14) the K−Bessel function and the hyperbolic func-
tion are even functions of µ. The ratio of I−functions is not even; we make it
even and write the integral on the interval [0,∞):

FI(x, y) =
1

π

∫ ∞

0

[
I ′iµ(ω)

Iiµ(ω)
+
I ′−iµ(ω)

I−iµ(ω)

]
Kiµ(ωr) coshµ(θ − 1

2
π) dµ. (5.15)

On the interval [ωr,∞) the K−function is strongly oscillating, and the main
contributions for large ω come from the interval [0, ωr). We replace the hy-
perbolic function by the dominant exponential term. Because of the symmetry
FI(x, y) = FI(−x, y), we consider θ ∈ (0, 1

2π], and replace coshµ(θ − 1
2π) by

1
2e

µ( 1

2
π−θ). Next we replace the Bessel functions by asymptotic forms that are

valid on [0, ωr). The best approximations are those based on the Airy func-
tions; see (A.14) and (A.16). However, when r is not close to unity, and θ not
close to zero, we can use the Debye type approximations given in (A.6) with ν
replaced by iµ and z by −iω/µ (for the I−functions), and z by −iωr/µ (for the
K−function).

Summarizing, we use,

I ′iµ(ω)

Iiµ(ω)
∼

√
ω2 − µ2

ω
− 1

2ω

ω2

ω2 − µ2
,

Kiµ(ωr) ∼
√

π

2µ

e
−µ1

2π−µ[
√

z2−1−arctan
√

z2−1]

(z2 − 1)
1

4

(
1 − u1(t)

iµ

)
,

(5.16)

where z = ωr/µ, t = iµ/
√
ω2r2 − µ2, and u1(t) is given in (A.7).

For I ′−iµ(ω)/I−iµ(ω) we can use the same estimate. This follows from (5.10),
after dividing by I−iµ(ω)/I−iµ(ω), and observing that then the right-hand side
becomes exponentially small on [0, ωr). We can use these estimates in the
following asymptotic analysis because the main contributions to the integral in
(5.15) come from a saddle point well inside [0, ωr).

Using the asymptotic estimates of the Bessel functions given in (5.16) in
(5.15) and substituting µ = ωr cosβ, with 0 < β ≤ 1

2π, we obtain

FI(x, y) ∼
√
ωr

2π

∫ 1

2
π

0

√
1 − r2 cos2 β

√
sinβg(β)e−ωrf(β) dβ, (5.17)

17



where
f(β) = sinβ + (θ − β) cosβ, f ′(β) = −(θ − β) sin β, (5.18)

g(β) =

(
1 − 1

2ω(1 − r2 cos2 β)3/2

) (
1 − u1(t)

iωr cosβ

)
, t = i cotβ. (5.19)

The saddle point at θ gives the dominant contributions, and f(θ) = f ′′(θ) =
sin θ. As long as β is bounded away from 0, the above estimates for the Bessel
functions are valid. We find

FI(x, y) ∼ e−ωr sin θ

[
√

1 − x2 +
−y −

√
1 − x2

2ω(1 − x2)
3

2

+ O(ω−2)

]
. (5.20)

By using more terms in the Debye expansions we can obtain a complete asymp-
totic expansion of FI that holds for large ω, uniformly for θ in a compact set of
(0, π).

Comparing this result with the estimate of F0 given in (4.24), we conclude
that, although the integrals in (5.17) and (4.8) are not the same, they have the
same asymptotic expansion.

5.1.2 The contributions from FB(x, y)

We write FB of (5.14) in the form

FB(x, y) =
−1

ωπ

∫ ∞

−∞

Liµ(ωr)

Iiµ(ω)I−iµ(ω)
coshµ(θ − 1

2
π) dµ, (5.21)

where Liµ(z) is the even part of Iiµ(z) (see (A.12)). We proceed as in the
treatment of FI(x, y). Observe that

Iiµ(z)I−iµ(z) = L2
iµ(z) +

sinh2(πµ)

π2
K2

iµ(z), (5.22)

and that on [0, ωr) the L−part is dominant compared with the K−part, because
of the different Airy functions in (A.14) for those functions. We use the first
term approximation of the Airy function Bi when ζ < 0 (see (A.20)), and obtain
if 0 ≤ µ < rω

Liµ(ω) ∼ e
1
2πµ+µη1

√
2π(ω2 − µ2)

1

4

, Liµ(ωr) ∼ e
1
2πµ+µηr

√
2π(ω2r2 − µ2)

1

4

, (5.23)

where

η1 =
√
z2
1 − 1 − arctan

√
z2
1 − 1, z1 =

ω

µ
,

ηr =
√
z2

r − 1 − arctan
√
z2

r − 1, zr =
ωr

µ
.

(5.24)

This gives, on substituting µ = ωr cosβ,

FB(x, y) ∼ −
√

2ωr

π

∫ 1

2
π

0

√
1 − r2 cos2 β

√
sinβe−ωg(β) dβ, (5.25)
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1.0−1.0

1.0

Figure 6: In the domain near the upper part of the boundary, equation in (5.28), that
defines the saddle points of the integral in (5.25), has one real saddle point; in the
shaded domain two real saddle points occur; in the domain below the shaded domain
two complex saddle points occur.

where

g(β) = 2 sinα+ r(θ + β − 2α) cosβ − r sinβ, cosα = r cosβ. (5.26)

When r = 1 we have g(β) = f(β), the function of (5.18). The saddle points
follow from

g′(β) = −r sinβ (θ + β − 2α) = 0. (5.27)

The relevant saddle point β0 is the one that follows from the equation

2 arccos(r cosβ) − β = θ, β ∈ (0, 1
2
π). (5.28)

This equation has one real solution β0 ∈ (0, 1
2π) for values of (x, y) in the

domain along the upper part of the boundary of the unit disc; see Figure 6. In
the shaded part of the disc there are two real saddle points, in the lower part
there are no real saddle points. The curves along the upper part of the shaded
domain are defined by r = cos 1

2θ, 0 ≤ θ ≤ 1
2π, with a symmetric part for x < 0.

This easily follows from drawing the curves of r cosβ and cos 1
2 (θ + β). The

curves along the lower part follow from the equation

tan θ =

√
1 − r2(1 + 8r2)

(4r2 − 1)
3

2

, 1
2
≤ r ≤ 1, 0 ≤ θ ≤ 1

2
π, (5.29)

with a symmetric part for x < 0. This equation follows from putting the deriva-

tive of 2 arccos(r cosβ) equal to unity, which gives r cosβ =
√

1
3 (4r2 − 1), and

using this relation in (5.28).
We concentrate on the domain along the boundary. In that case a unique
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real saddle point β0 ∈ (0, 1
2π) satisfies (5.28). We have

g(β0) = 2 sinα− r sinβ0 = 2
√

1 − r2 cos2 β0 − r sinβ0,

g′′(β0) =
2r2 sin2 β0

sinα
− r sinβ0 =

2r2 sin2 β0√
1 − r2 cos2 β0

− r sinβ0.
(5.30)

It follows that a first order saddle point approximation reads

FB(x, y) ∼ −2

√
r sinβ0(1 − r2 cos2 β0)

g′′(β0)
e−ωg(β0). (5.31)

This is the requested boundary layer term; it compensates the wrong behavior
of FI(x, y) at the upper boundary. Namely, it easily follows that, if r = 1, y > 0:

FB(x, y) ∼ −2ye−ωy. (5.32)

Hence, if r = 1, y > 0, by (3.1) and (5.13),

Φ(x, y) = −y − eωyF (x, y) = −y − eωy [FB(x, y) + FI(x, y)]

∼ −y − eωy
[
−2ye−ωy + ye−ωy

]
= 0.

(5.33)

We conclude that the splitting of the function F into FB and FI yields the
asymptotic behavior of Φ(x, y) inside the upper half of the unit disc (includ-
ing the upper boundary), with exception of small neighborhoods of the points
(±1, 0). The uniform approximations can be given in terms of elementary func-
tions. We expect that near the points (±1, 0) integrals containing ratios of Airy
functions are needed for the local approximations.

A Asymptotic expansions of modified Bessel func-

tions

We summarize a few properties and asymptotic expansions of the modified
Bessel functions. These can be found in [1, Ch. 9] or in other mentioned refer-
ences.

From the expansion

Iν(z) = (1
2
z)ν

∞∑

k=0

(1
4z

2)k

k! Γ(ν + k + 1)
(A.1)

it follows that

Iν(z) =
(1
2z)

ν

Γ(ν + 1)

[
1 + O(ν−1)

]
, ν → ∞, (A.2)
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with z fixed. Asymptotic expansions for large arguments are

Iν(z) ∼ ez

√
2πz

[
1 − α1

z
+
α2

z2
− α3

z3
+ . . .

]
,

Kν(z) ∼
√

π

2z
e−z

[
1 +

α1

z
+
α2

z2
+
α3

z3
+ . . .

]
,

I ′ν(z) ∼ ez

√
2πz

[
1 − β1

z
+
β2

z2
− β3

z3
+ . . .

]
,

K ′
ν(z) ∼ −

√
π

2z
e−z

[
1 +

β1

z
+
β2

z2
+
β3

z3
+ . . .

]
,

(A.3)

where

α1 =
µ− 1

8
, α2 =

(µ− 1)(µ− 9)

2! 82
, α3 =

(µ− 1)(µ− 9)(µ− 25)

3! 83
,

β1 =
µ+ 3

8
, β2 =

(µ− 1)(µ+ 15)

2! 82
, β3 =

(µ− 1)(µ− 9)(µ+ 35)

3! 83
,

(A.4)

and µ = 4ν2. The expansions for the K−functions hold for |ph z| < 3
2π, those

for the I−functions for |ph z| < 1
2π.

A.1 Debye-type expansions

Let
t = 1/

√
1 + z2, η =

√
1 + z2 + ln

z

1 +
√

1 + z2
. (A.5)

Then

Iν(νz) ∼ 1√
2πν

eνη

(1 + z2)
1

4

[
1 +

u1(t)

ν
+
u2(t)

ν2
+ . . .

]
,

Kν(νz) ∼
√

π

2ν

e−νη

(1 + z2)
1

4

[
1 − u1(t)

ν
+
u2(t)

ν2
+ . . .

]
,

I ′ν(νz) ∼ 1√
2πν

(1 + z2)
1

4

z
eνη

[
1 +

v1(t)

ν
+
v2(t)

ν2
+ . . .

]
,

K ′
ν(νz) ∼ −

√
π

2ν

(1 + z2)
1

4

z
e−νη

[
1 − v1(t)

ν
+
v2(t)

ν2
+ . . .

]
,

(A.6)

where
u1 = 1

24
t(3 − 5t2), v1 = 1

24
t(−9 + 7t2). (A.7)

The higher coefficients follow, for k = 2, 3, . . . , from

uk(t) = 1
2
t2 (1 − t2)u′k−1(t) + 1

8

∫ t

0

(1 − 5τ2)uk−1(τ) dτ ,

vk(t) = uk(t) + t(t2 − 1)
[

1
2
uk−1(t) + t u′k−1(t)

]
.

(A.8)

The expansions in (A.6) hold as ν → +∞, uniformly with respect to z in
the sector |phz| ≤ 1

2π − δ, where δ is a small positive number. They have a
double asymptotic property: they hold when one of the parameters z, ν tends
to infinity, uniformly with respect to the other parameter.
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A.2 Airy-type expansions

We give Airy-type asymptotic expansions of the modified Bessel functions and
concentrate on functions with purely imaginary order. We summarize the results
of [5].

Let ζ be defined by

2
3
ζ

3

2 = arctanh
√

1 − z2 −
√

1 − z2, 0 < z ≤ 1,

2
3
(−ζ) 3

2 =
√
z2 − 1 − arctan

√
z2 − 1, z ≥ 1.

(A.9)

By expanding the arctanh-function:

2
3
ζ

3

2 = 1
3
(1 − z2)

3

2 + 1
5
(1 − z2)

5

2 + . . . , (A.10)

which gives
ζ = 2

1

3 (1 − z) [1 + O(1 − z)] , z → 1. (A.11)

This defines the relation near z = 1. For complex values of z this relation should
be used with analytic continuation to define which branch of the multi-valued
function ζ

3

2 is used.
The function Kiν(z) is real for real values of ν and z, z > 0. The func-

tion Iiν(z) is complex in that case. Therefore it is convenient to introduce the
function

Liν(z) = 1
2

[I−iν (z) + Iiν(z)] . (A.12)

This function is real for real values of ν and z, z > 0 and the definition may be
compared with the relation

Kiν(z) =
π

2i sinh(πν)
[I−iν (z) − Iiν(z)] , (A.13)

which is defined at ν = 0, with limit K0(z).
We have the following representations

Kiν(νz) = π ν−
1

3 e
−ν 1

2π
(

4ζ

1 − z2

) 1

4

×
[
Ai(−ν 2

3 ζ)Fν(ζ) + ν−
4

3 Ai′(−ν 2

3 ζ)Gν (ζ)
]
,

Liν(νz) = 1
2
ν−

1

3 eν 1

2
π

(
4ζ

1 − z2

) 1

4

×
[
Bi(−ν 2

3 ζ)Fν(ζ) + ν−
4

3 Bi′(−ν 2

3 ζ)Gν(ζ)
]
,

(A.14)

where the functions Fν(ζ), Gν (ζ) can be expanded:

Fν(ζ) ∼
∞∑

s=0

As(−ζ)
ν2s

, Gν(ζ) ∼
∞∑

s=0

Bs(−ζ)
ν2s

, (A.15)
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as ν → ∞, A0(ζ) = 1. If ν > 0 the expansions hold uniformly with respect to z
in the sector |phz| ≤ π− δ, where δ is a small positive number. Ai(z) and Bi(z)
are the well-known Airy functions; see [1, Ch. 10]. We also have

Iiν (νz) =
eν 1

2
π

2 ν
1

3

(
4ζ

1 − z2

) 1

4

×
[
B̂i(−ν 2

3 ζ)Fν(ζ) + ν−
4

3 B̂i
′
(−ν 2

3 ζ)Gν(ζ)
]
,

(A.16)

where B̂i(z) is a linear combination of two Airy functions:

B̂i(z) = Bi(z) − i tanh(πν)Ai(z). (A.17)

The coefficients As(ζ) and Bs(ζ) in (A.15) are analytic functions in a large do-
main of the ζ− plane and are the same as those used in the Airy-type expansions
of ordinary Bessel functions (cf. [18, p. 421]). In [5] the expansions like (A.15)
are supplied with remainders, and bounds on the remainders can be obtained
from [18, p. 418]. 1

When in (A.14) and (A.16) the arguments of the Airy functions are large,
these functions can be replaced by their asymptotic expansion, and the expan-
sions are in terms of elementary functions. For example, when z > 1, ζ is
negative (see (A.9)), and the arguments of the Airy functions in (A.14) are
positive. By using

Ai(z) ∼ 1
2
π− 1

2 z−
1

4 e−
2

3
z

3

2 , Bi(z) ∼ π− 1

2 z−
1

4 e
2

3
z

3

2 , (A.18)

as z → ∞, we obtain for large µ and z > 1

Kiµ(µz) ∼
√

π

2µ

e−
1

2
πµ−µ[

√
z2−1−arctan

√
z2−1]

(z2 − 1)
1

4

, (A.19)

and

Liµ(µz) ∼ 1√
2πµ

e
1

2
πµ+µ[

√
z2−1−arctan

√
z2−1]

(z2 − 1)
1

4

. (A.20)

These results follow also formally form the Debye expansion of Kν(νz) and
Iν(νz) given in (A.6) by replacing ν → iµ and z → −iz.

B On the zeros of Kiν(x) and Iiν(x) with respect

to ν

The function Kiν(x) is an even function of ν. If x > 0 it has an infinite number
of simple real ν−zeros and no complex zeros (cf., for instance, [4]). There are

1In Dunster’s formula (4.6) there seems to be an error, and in (4.7), (4.14), and (4.14) he
should have used the coefficients As(−ζ), Bs(−ζ) instead of (−1)sAs(ζ), (−1)sBs(ζ). Also,

in (4.15) the arguments of the Airy functions should read −ν
2

3 ζ.
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two infinite strings of zeros inside the intervals (−∞,−x] and [x,∞). For large
values of x the zeros can be obtained by using the asymptotic representation
in (A.14). The Airy function Ai(x) has real negative zeros, and consequently
Kiν(νz) has zeros if ζ > 0. From (A.9) we see that z should satisfy 0 < z < 1,
that is, to have zeros the order of Kiν(x) should be larger (in absolute value)
than the argument x.

The location of the zeros of the function Iν(x) is more complicated. First
we mention the following result from [3].

Lemma 1 The function Iν(x), with x > 0, cannot vanish if ℜν > − 3
2 .

Proof. The proof is based on the following representation (cf. [27, p. 150])

Iµ(x) Iν (x) = 2
π

∫ 1

2
π

0

Iµ+ν (2x cos θ) cos[(µ− ν)θ] dθ, (B.1)

which holds if ℜ(µ+ ν) > −1. Let ν = ν1 + iν2 be given with ν2 6= 0; we try to
find µ = µ1 + iµ2 such that the following conditions hold:

• µ + ν is real and larger than −1, which gives µ2 = −ν2, µ1 + ν1 > −1;
from the series expansion of the Bessel function it follows that the function
Iµ+ν(2x cos θ) is positive.

• The imaginary part of cos(µ−ν)θ, which is sin(ν1−µ1)θ sinh 2µ2θ, should
have a fixed sign on the interval of integration (if µ1 = ν1 this part is zero,
but then the real part is positive). When |µ1 − ν1| < 2 this condition is
satisfied.

Combining the two conditions we conclude that Iν(z) cannot vanish if ν1 > − 3
2 .

When x is large the location of the zeros of Iν(νx) can be derived from

(A.16): we need the zeros of the Airy function B̂i(z) defined in (A.17). We can
eliminate the functions Ai(z) and Bi(z) by using

Ai(z) = −e 2

3
πiAi

(
ze

2

3
πi

)
− e−

2

3
πiAi

(
ze−

2

3
πi

)
,

Bi(z) = e
1

6
πiAi

(
ze

2

3
πi

)
+ e−

1

6
πiAi

(
ze−

2

3
πi

)
,

(B.2)

(cf. [1, p. 446]). The result is

B̂i(z) = e−
1

6
πi[1 + tanh(πν)] ×

Ai
(
ze−

2

3
πi

)
+ e

1

6
πi[1 − tanh(πν)] Ai

(
ze

2

3
πi

)
,

(B.3)

from which follows that, if ν is large, the zeros of B̂i(z) are approximately

given by those of the Airy function Ai
(
ze−

2

3
πi

)
, which lie on the half-line with
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ph z = − 1
3π. From (A.16) and (B.3) we infer that the zeros of Iiν(νz) can be

derived from those of Ai(−ν 2

3 ζe−
2

3
πi).

Before giving more details on the ν−zeros of Iν(z) we introduce a different
notation in (A.16), because the order ν occurs also in the argument. Let

z =
ω

ν
, ν = µω. (B.4)

Then, the first line of (A.9) becomes

2
3
ζ

3

2 = arctanh
√

1 − 1/µ2 −
√

1 − 1/µ2. (B.5)

A first approximation of the µ−zeros of Iiµω(ω) if ω is large can be obtained
as follows. When we denote the negative zeros of Ai(z) by as, s = 1, 2, . . ., then

the zeros µs of the dominant Airy function in (A.16), that is, of B̂i(−ν 2

3 ζ) with
ν = ωµ, are approximately given by

µ
2

3

s e
− 2

3
πiζs ∼ −asω

− 2

3 , (B.6)

where ζs is given in (B.5) with µ = µs. Using the relation in (A.11), that is,

ζ = 2
1

3 (µ− 1) [1 + O(µ− 1)] , µ→ 1, (B.7)

we obtain for the early zeros (small values of s) of Iiµω(ω) the estimate

µs = 1 − as 2−
1

3 ω− 2

3 e
2

3
πi + O

(
ω− 4

3

)
, ω → ∞. (B.8)

When we consider the function Iiν(ω), we see that for large values of ω the
ν−zeros near ω have the expansion

νs = ω − as

(
1
2
ω
) 1

3

e
2

3
πi + O

(
ω− 1

3

)
, ω → ∞, (B.9)

and that Iν(ω) has ν−zeros near iω with the expansion

νs = iω − as

(
1
2
ω
) 1

3

e
7

6
πi + O

(
ω− 1

3

)
, ω → ∞, (B.10)

with conjugate values in the lower half plane.
In Figure 7 the first 25 zeros of the function Ai(−ν 2

3 ζe−
2

3
πi) are given. This

Airy function is used via (B.3) in (A.16), with ζ defined in (A.9). The first zeros
correspond with the ν−zeros of Iiν(ω), and an approximation of these zeros is
given in(B.9).

The expansions in (B.9) and (B.10) agree with the analysis in [2], where the

ν−zeros of the Hankel function H
(1)
ν (w) are investigated. However, with the

information in (B.9), (B.10) and Figure 7, the description of the zeros of the
modified Bessel function Iiν(ω) is not complete. To see this, we observe that
the hyperbolic functions in (B.3) may have poles when ν becomes an imaginary
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Figure 7: First 25 zeros of the Airy function Ai(−ν
2

3 ζe−
2

3
πi) corresponding with some

ν−zeros of Iiν(ω), of which an approximation is given in (B.9).

number, and the first term in (B.3) is no longer the dominant one. For describing
the zero distribution also the role of the hyperbolic functions should be taken
into account. The zeros of Iiν (ω) near the positive imaginary ν−axis correspond
with zeros of Iν(ω) near the negative ν−axis.

It is better to describe these zeros near and on the negative ν−axis by using
the relation

I−ν(ω) = Iν(ω) +
2

π
sinπν Kν(ω). (B.11)

By using (cf. [1], page 375)

Iν(ω) ∼
(

1
2
ω
)ν

/Γ(ν + 1), Kν(ω) ∼ 1
2
Γ(ν)

(
1
2
ω
)−ν

, ν → ∞, (B.12)

with ω fixed, we see that large ν−zeros occur near the large positive zeros of
sinπν.

A better description follows by using the Debye-type expansions of (A.6). It
follows that approximations of the µ−zeros of Iµω(ω) can be obtained from the
equation

e2µωη = −2 sinµωπ, (B.13)

where
η =

√
1 + 1/µ2 − ln

(
µ+

√
µ2 + 1

)
. (B.14)

When we write µ = sinhκ, we see that µη = coshκ − κ sinhκ, and it is not
difficult to compute the zeros from the above analysis. It is easily verified that
real negative zeros of Iν(ω) occur if ν < −ω sinhκ0, where κ0 = 1.19968 . . . is
the positive solution of the equation η = 0, that is of coshκ − κ sinhκ = 0. In
Figure 8 we show the ν−zeros of Iν(ω) for ω = 10. We see that left from −15.0
real negative zeros occur (observe that ω sinhκ0

.
= 15.0888 if ω = 10).
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Figure 8: The ν−zeros of Iiν(ω) for ω = 10. Left from ν
.
= −15.0888ω real negative

zeros occur.

Epilogue

My thesis supervisor Hans Lauwerier suggested me to study this type of prob-
lems when the topic of matched asymptotic expansions for singular perturbation
methods became very popular in my country, with as main actors Wiktor Eck-
haus, Eduard de Jager, and Johan Grasman. Lauwerier liked simple non-trivial
model problems which could be studied by using the explicit solutions in the
form of integrals and series, and by exploiting the role of special functions and
the well-known techniques of asymptotic analysis, such as saddle point methods.

Our aim was to obtain new insight in certain phenomena of singular per-
turbation problems by studying these model problems. My paper [23] provides
a few results that, perhaps, cannot be obtained by using matched asymptotic
analysis.

In my younger days the results were not suitable as part of my thesis. Later
I studied this circle problem time and again, and came back to it quite often,
and I was not earlier satisfied with the results. Quite recently a few steps gave
the desired breakthrough, although the treatment of the asymptotics near the
points (±1, 0) is still missing in the present paper. This can be done by replacing
the modified Bessel functions in (5.14) by their approximations in terms of Airy
functions, which I don’t like because it gives a rather messy result.

This paper summarizes, somehow, a lifetime activity in asymptotic analysis
and special functions. I appreciate that it can be included in the proceedings of
the Santander conference.
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[17] José L. López and Ester Pérez Sinuśıa. Asymptotic expansions for two sin-
gularly perturbed convection-diffusion problems with discontinuous data:
the quarter plane and the infinite strip. Stud. Appl. Math., 113(1):57–89,
2004.

[18] F. W. J. Olver. Asymptotics and special functions. Computer Science and
Applied Mathematics. Academic Press, New York-London, 1974. Reprinted
by AK Peters, Wellesley, 1997.

[19] P.H. Roberts. Singularities of Hartman layers. Proc. R. Soc. Lond., Ser.
A, 300, 1967.

[20] J. A. Shercliff. Magnetohydrodynamic pipe flow. II. High Hartmann num-
ber. J. Fluid Mech., 13:513–518, 1962.

[21] Shagi-Di Shih. A novel uniform expansion for a singularly perturbed
parabolic problem with corner singularity. Methods Appl. Anal., 3(2):203–
227, 1996.

[22] Shagi-Di Shih. Angular layer of a singularly perturbed parabolic problem
with corner singularity. Canad. Appl. Math. Quart., 9(2):159–188, 2001.

[23] N. M. Temme. Analytical methods for a singular perturbation problem in
a sector. SIAM J. Math. Anal., 5:876–887, 1974.

[24] Nico M. Temme. Special functions. A Wiley-Interscience Publication. John
Wiley & Sons Inc., New York, 1996. An introduction to the classical func-
tions of mathematical physics.

[25] R.T. Waechter. Steady longitudinal motion of an insulating cylinder in a
conducting fluid. Proc. Camb. Philos. Soc., 64:1165–1201, 1968.

29



[26] Wolfgang Wasow. Asymptotic solution of boundary value problems for the
differential equation ∆U+λ∂U/∂x = λf(x, y). Duke Math. J., 11:405–415,
1944.

[27] G. N. Watson. A Treatise on the theory of Bessel functions. Cambridge
University Press, Cambridge, England, 1944.

[28] R. Wong. Asymptotic approximations of integrals. Computer Science and
Scientific Computing. Academic Press Inc., Boston, MA, 1989. Reprinted
by SIAM, Philadelphia, 2001.

[29] A. Zygmund. Trigonometric series. 2nd ed. Vols. I, II. Cambridge Uni-
versity Press, New York, 1959. Reprinted by Cambridge University Press,
1988.

30


